Department of Electronics and Instrumentation Engineering

M.Sc. (I \& T) IV semester (2013-2014)

ELECTRICAL CIRCUITS DEVICES \& DIGITAL LAB

LIST OF EXPERIMENTS

1. Characteristics of Semiconductor diode
2. Characteristics of Zener diode
3. Characteristics of Bipolar Junction Transistor (BJT).
4. Fixed IC voltage Regulator.
5. Analysis of DC Resistive Circuits. (KVL, KCL) .
6. Simulation of Super position and Tellegen's theorem using Electronic Work Bench (EWB) Softare.
7. Simulation of simple electronic circuits (OP-AMP based) using Electronic Work Bench (EWB)' Software.
8. Implementation of Digital to Analog Converter using Millman's theorem.
9. Digital Multiplexer and De-multiplexer.
10. Verification of Logic Gates using Integrated Chips.
11. Implementation of Half adder and Half Subtractor using Logic gates.
12. Simplification of Boolean expression using Karnaugh map.

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

EXP NO:

DATE:

CHARACTERISTICS OF SEMI-CONDUCTOR DIODE

AIM:

To obtain the volt-ampere characteristics of the semi-conductor diode.
EQUIPMENTS REQUIRED:

DC voltage source
Potential divider ($1000 \Omega, 1.2 \mathrm{~A}$)
Milli ammeter ($0-50 \mathrm{~mA}$)
Voltmeter (0-30V)
Diode (IN 4007)

- 1 No.
- 1 No.
-1 No.
- 1 No.
- 1 No.

THEORY :

Diode is a 2 layer uni-directional semi-condueter device. It has 2 terminals. i.e anode(A) and cathode (K). It will conduct only in the forward bias and not in reverse bias. This means that it provides very low resistance in the forward bias and a very high resistance in the reverse bias. It is used in the rectifier circuit for converting AC to DC.

PROCEDURE:

(a) Forward Bias:
(i) Connections are given as per the circuit diagram shown in Figure.1.
(ii) By varying the potential diyder from zero to maximum, corresponding voltmeter and ammeter readings are noted.
(iii) The above readings are tabulated and a graph is drawn with anode cathode voltage $\left(\mathrm{V}_{\mathrm{AK}}\right)$ along X -axis and current $\left(\mathrm{I}_{\mathrm{AK}}\right)$ along Y -axis.
(iv) Find D.C forward resistance and A.C forward resistance as explained in the model graph.
(b) Reverse Bias:
(i) Connections are given as per the circuit diagram shown in Figure.2.
(ii) By varying the potential divider from zero to maximum, corresponding voltmeter and anmeter readings are noted.

PRECAUTION:

(i) The potential divider should be kept at minimum potential position at the time of starting the experiment.
(ii) The junction diode should be connected with proper polarity.
(iii) Do not give connections when supply is switched ON.
(iv) Power supply should be switched ON only when the connections in the circuit are satisfied.

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

EXP NO:

DATE:

CHARACTERISTICS OF ZENER DIODE

AIM:

To obtain the Volt-ampere characteristics of Zener diode.

SPECIFICATIONS:

Nominal Zener voltage at $\mathrm{I}_{\mathrm{Z}} \quad$ - 6.2 Volts
Test current $\mathrm{I}_{\mathrm{Z}} \quad-\quad 20 \mathrm{~mA}$
Max. Dynamic impedance at I_{Z}
Max. Leakage current at V_{ZR}
Leakage current test voltage V_{ZR}

- $\quad 12$ ohms
- $\quad 10 \mu \mathrm{~A}$

Typical temp. Coefficient
± 0.03

COMPONENTS REQUIRED:

(i) 30 Volts DC power supply.
(ii) 3900 ohms, 0.3 amp potential divider.
(iii) $0-50 \mathrm{~mA}, \mathrm{mc}$ ammeter.
(iv) $0-3$ volts, mc voltmeter.
(v) $0-10$ volts, mc voltmeter
(vi) Zener diode FZ 6.2V.
(vii) $1.5 \mathrm{kohm}, 1 / 2$ watt resistor.

THEORY:

Zener diode is a two layer bilateral semiconductor device. It is also called as a voltagereference, voltage regulator or breakdown diode. It consists of a PN junction and it is mainly operated in the reverse breakdown tegion. The break down voltage of a zener diode is set by carefully controlling the doping leyel during manufacture. It is having two terminals named anode(A) and cathode (K)

APPLICATIONS:

Zeyer diode has a number of applications, yet the following applications are important.
(i) As a voltage regulator.

As a fixed reference voltage in transistor biasing circuits.
(iii) As peak clippers or limiters in wave shaping circuits.
(iv) For meter protection against damage.

PROCEDURE:

(i) Give connections as per the circuit diagram.
(ii) Vary the potential divider in steps and note down the corresponding voltmeter and ammeter readings.
(iii) Same procedure is repeated by reverse biasing the zener diode.
(iv) Tabulate the readings and obtain the volt-ampere characteristics with voltmeter readings along X -axis and ammeter readings along Y -axis.

PRECAUTIONS:

(i) The potential divider should be kept at minimum potential position.
(ii) Zener diode should be connected with proper polarity.

RESULT:

The volt-ampere characteristic of zener diode was thus obtained.

EXP NO:

DATE:

CHARACTERISTICS OF A TRANSISTOR

AIM:

To determine the (i) Input characteristics and (ii) Output characteristics of the giventansistor in common emitter configuration.

APPARATUS REQUIRED:

D.C Voltmeter ($0-10 \mathrm{~V}$), ($0-1 \mathrm{~V}$)
D.C Ammeter $(0-100 \mathrm{~mA}) \&(0-100 \mu \mathrm{~A})$

Rheostat of 3600 ohms and 0.3 A
Transistor SL 100 (NPN Transistor)

THEORY:

Input characteristics:

Figure. 1 shows a transistor in common emitter configutation. From Figure. 1 it is clear that I_{B} \& V_{BE} are the input quantities and $\mathrm{I}_{\mathrm{C}} \& \mathrm{~V}_{\mathrm{CE}}$ are the output quantities. Study of input quantities keeping V_{CE} as constant gives input characteristics.

Output characteristics:

Study of output quantities keeping I_{B} a constant gives output characteristics.

PROCEDURE:

Input characteristics:

1. Give the connection as shown in Figure. 1
2. Voltage betfeen collector and emitter is fixed say at 1 V by varying Rheostat V_{BE} is changed and corresponding I_{B} is noted
3. Coffector to emitter voltage V_{CE} is fixed at say $2 \mathrm{~V}, 3 \mathrm{~V}$ etc and the above procedure is repeated
4. Agraph between $\mathrm{V}_{\mathrm{BE}} \& \mathrm{I}_{\mathrm{B}}$ is drawn for various values of V_{CE}.

Output Characteristics:
Give the connection as shown in Figure. 2
2. The base current is kept at a value say $25 \mu \mathrm{~A}$ with the help of the rheostat. The variation of collector current is noted by varying the collector voltage.
3. Repeat the above procedure for $\mathrm{I}_{\mathrm{B}}=50 \mu \mathrm{~A} \& \mathrm{I}=75 \mu \mathrm{~A}$.
4. A graph between $V_{C E} \& I_{C}$ is drawn for various values of I_{B}.

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

EXP N0:

DATE:

FIXED IC VOLTAGE REGULATOR

AIM:

To construct a Fixed IC voltage regulator for Fixed voltage

COMPONENTS REQUIRED:

Auto Transformer $1 \varphi, 230 \mathrm{~V} / 270 \mathrm{~V}$

- 1 No.

Step down Transformer $1 \varphi, 230 \mathrm{~V} / 15 \mathrm{~V}^{`}$
Diodes (BY 127)

- 1 No.

IC - 7805
-4 Nos.
Capacitor $1000 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}$

- 1No.

Milli ammeter ($0-100 \mathrm{~mA}$)

- 1No.

Voltmeter (0-40V)
Rheostat $3.6 \mathrm{~K} \Omega, 0.3 \mathrm{~A}$

SPECIFICATIONS OF IC 7805:

Output Voltage - 5V DC
Max. Input Voltage - 35V DC
Max. Output Current - 1A
IC 7805 is available in TO -220 plastic package

THEORY:

The 7800 series consist of three terminal positive voltage regulators with seven voltage options.

IC 7805 provides a constant output voltage of 5 volts for line and load variations. The proper operation requires a common ground between input and output voltage. In addition the difference between input and output voltages ($\mathrm{Vin} \sim \mathrm{Vo}$) called DROPOUT voltage must be typically 2 V . The capacitor C_{i} filters out the effect of stray inductance in the input wires and is required if the regulators are located at appreciable distance from a power supply. Filter capacitor C_{0} may be used to improve the transient response of the regulator to sudden load current changes.

PROCEDURE:

LINE VARIATION:

1. Give the connections as per the circuit diagram shown in Figure 2.
2. Now keep the unregulated input at 25 V by increasing the auto transformer output voltage.
3. For taking the no load reading keep the SPST switch open and note down the output voltage.
4. Now decrease the input voltage in steps of 5 V and note down the corresponding input and output voltages.

LOAD VARIATION:

1. Set the input voltage at pin 1 of 7805 at 25 V and close the SPST switch.
2. Measure the output voltage for different load currents.

PRECAUTIONS

1. The output voltage of the auto-transformer should not exceed 230 V .
2. The input voltage applied to IC7805 should not exceed 35 V .

TO - 220 PLASTIC PACKAGE OF IC 7805

TYPICAL CIRCUIT CONNECTION FOR IC 7805

FIGURE 1

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

FIXED VOLTAGE REGULATOR:

Table. 1: Load Variation

$$
\mathbf{V}_{\text {out }}=\mathbf{V}
$$

Table. 2: Line Variation

$$
\mathbf{V}_{\mathrm{in}}=\quad \mathbf{V}
$$

Load Current (mA)	Output Voltage (Volts)

MODEL GRAPH:

FIXED VOLTAGE REGULATOR:

Line Variation

RESULT:

Thus Fixed IC Voltage Regulator was constructed and tested.

EXP NO:

DATE:

ANALYSIS OF DC RESISTIVE CIRCUITS

AIM :
To analyze the given DC circuit and verify Kirchoff's current law, Kirchoff's voltage aw and Ohm's law experimentally.

COMPONENTS REQUIRED:

Resistor 100Ω, $200 \Omega-2$ Nos.
Resitor $470 \Omega \quad-1$ No.
Dc power supply - 2 Nos.
Ammeter ($0-50 \mathrm{~mA}$) - 3Nos.
Voltmeter ($0-10 \mathrm{~V}$) - 3Nos.

KIRCHOFF'S CURRENT LAW:

The sum of the currents entering a junction is equalte the sum of the currents leaving the junction. In other words, if the current flowing toward a junction is taken as positive and the current flowing away from the junction is taken as negative, then this law states that the algebraic sum of all currents at a junction is zero.

KIRCHOFF'S VOLTAGE LAW:

The sum of the potential rises around anyelosed path in a circuit is equal to the sum of potential drops in it. In other words, he algebraic sum of the potential difference in a closed path is considered to be zero.

OHM'S LAW:

At constant temperature, the eurrent flowing through the conductor is directly proportional to the potential difference applied across its ends.

PROBLEM:

$$
\mathbf{V}=\mathbf{I} \cdot \mathbf{R}
$$

Verify Kirchoff's current law at Junction A and voltage law in loop1 for the circuit shown in Figure. 1

Figure. 1

From the circuit, the loop equations are

For Loop1

$$
10=100 \mathrm{I}_{1}+470\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)+200 \mathrm{I}_{1}
$$

For Loop2

$$
5=470\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)+200 \mathrm{I}_{2}+100 \mathrm{I}_{2}
$$

Simplifying the equations, we get

$$
\begin{aligned}
& 10=770 \mathrm{I}_{1}-470 \mathrm{I}_{2} \\
& 5=-470 \mathrm{I}_{1}+770 \mathrm{I}_{2}
\end{aligned}
$$

Writing the above equations in the form of a matrix, we get

$$
\left(\begin{array}{cc}
770 & -470 \\
-470 & 770
\end{array}\right)\binom{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\binom{10}{5}
$$

By applying crammer's rule

$$
\begin{aligned}
& \mathrm{I}_{1}=\frac{\Delta_{1}}{\Delta} ; \mathrm{I}_{2}=\frac{\Delta_{2}}{\Delta} \\
& \Delta=\left|\begin{array}{cc}
770 & -470 \\
-470 & 770
\end{array}\right|=372000 \\
& \Delta_{1}=\left|\begin{array}{cc}
10 \\
5 & -470 \\
770
\end{array}\right|=10050 \\
& \text { Now, } \mathrm{I}=27.02 \mathrm{~mA} ; \mathrm{I}_{2}=22.98 \mathrm{~mA}
\end{aligned}
$$

Here I_{1} and X_{2} are the loop currents. From these, the branch currents $\mathrm{I}_{3}, \mathrm{I}_{4}$ and I_{5} are found as follows:

$$
\begin{aligned}
& \mathrm{I}_{3}=\mathrm{I}_{1}=27.02 \mathrm{~mA} \\
& \mathrm{I}_{4}=\mathrm{I}_{2}=22.98 \mathrm{~mA} \\
& \mathrm{I}_{5}=\mathrm{I}_{1}-\mathrm{I}_{2}=4.04 \mathrm{~mA}
\end{aligned}
$$

Here at node ' A ', the current I_{3} is the entering and $I_{4} \& I_{5}$ are leaving.

$$
\begin{aligned}
& \mathrm{I}_{3}=\mathrm{I}_{4}+\mathrm{I}_{5} \\
& 27.02 \mathrm{~mA}=22.98 \mathrm{~mA}+4.04 \mathrm{~mA}
\end{aligned}
$$

Hence KCL is proved theoretically.

CIRCUIT DIAGRAM:

TABLE. 1 VERIFICATION OF KIRCHOFF'S CURRENT LAW:

		Theoretical(mA)	Practical (mA)
Current throurgh 100Ω	$\mathbf{I}_{3}=\mathbf{I}_{\mathbf{1}}$ (entering current)	27.02	
Current through 200Ω	$\mathbf{I}_{\mathbf{4}}=\mathbf{I}_{\mathbf{2}}$ (leaving current)	22.98	
Current through 470Ω	$\mathbf{I}_{\mathbf{5}}=\mathbf{I}_{\mathbf{1}}-\mathbf{I}_{\mathbf{2}}$ (leaving current)	4.04	

KIRCHOFF'S VOLTAGE LAW:

The sum of the potential rises around any closed path in a circuit is equal to the sum of potential drops in it. In other words, the algebraic sum of the potential difference in a closed path is considered to be zero.

Figure. 3 Practical Circuit to yerify Kirchoff's Voltage Law

TABLE. 2 VERIFICATION OF KIRCHOFF'S VOLTAGE LAW:

Element	Current through the resistance (mA)	Resistance value $(\boldsymbol{\Omega})$	Voltage drop (Volts) Theoretical	Voltage drop (Volts) Practical
R_{1}	$\mathrm{I}_{1}=27.02$	100	$\mathrm{~V}_{1}=2.702$	
R_{2}	$\mathrm{I}_{1}-\mathrm{I}_{2}=4.04$	470	$\mathrm{~V}_{2}=1.899$	
R_{3}	$\mathrm{I}_{1}=27.02$	200	$\mathrm{~V}_{3}=5.404$	

By KVL,
Sum of potential rise $=$ Sum of potential drops

$$
\begin{aligned}
& \mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3} \\
& 10 \mathrm{~V}=2.702 \mathrm{~V}+1.899 \mathrm{~V}+5.404 \mathrm{~V} \\
& 10 \mathrm{~V}=10 \mathrm{~V}
\end{aligned}
$$

Hence KVL is verified.

OHM'S LAW:

From Figure.3, we measure the drop across the resistor R_{1} i.e V_{1}

$$
\begin{aligned}
& \mathrm{V}_{1}=\mathrm{I}_{1} * \mathrm{R}_{1} \\
& \mathrm{~V}_{1}=27.02 * 10^{-3} * 100 \Omega \\
& \mathrm{~V}_{1}=2.702 \mathrm{volts}
\end{aligned}
$$

TABLE. 3 VERIFICATION OF OHM'S LAW:

1. To verify Kirchoff's current law, make connections as shown in Figure.2.
2. Switch on the power supply, note down the ammeter readings and enter in the Table. 1
3. Check whether the algebraic sum of current is zero.
4. To verify Kirchoff's voltage law, make connections as shown in Figure.3.
5. Switch on the power supply, note down the voltmeter readings and enter in the
6. Check whether the algebraic sumpor voltages is zero.
7. To verify ohm's law, make eonnections shown in Figure.3.
8. Switch on the power supply, note down V_{1} and enter it in the Table. 3
9. Compare the experimentally obtained V_{1} with the theoretical V_{1}.

RESULT:

Thus the given DG circuit was analyzed and various laws were verified experimentally.

EXP NO:

DATE:

SIMULATION OF SUPER POSITION THEOREM AND TELLEGEN'S THEOREM USING ELECTRONIC WORK BENCH SOFTWARE

AIM:
To simulate and analyze super position theorem and tellegen's theorem using Electronic Work Bench software.

(A)SUPER POSITION THEOREM

THEOREM:

The current through, or voltage across, an element in a linear bilaterhl network is equal to the algebraic sum of the currents or voltages produced independently by each source.

THEORITICAL DETERMINATION OF I_{L} :

Figure 2 shows the given circuit considering the effect of E_{1} (30 V source) To determine the current through $\mathrm{R}_{\mathrm{L}}(1 \mathrm{~K})$ resistor i.e. I_{L} when E_{1} is present:
The total resistance of the network as seen by the source

$$
\mathrm{R}_{\mathrm{T} 1}=\mathrm{R}_{1}+(\mathrm{R} 2 \| \mathrm{RL})=539.72 \Omega
$$

The total current drawn by the network from the source

$$
\mathrm{I}_{\mathrm{T} 1}=\mathrm{E}_{1} / \mathrm{R}_{\mathrm{T} 1}=55 \mathrm{~mA}
$$

Applying current divider rule,

$$
\mathrm{I}_{2}=\left[\mathrm{R}_{2} /\left(\mathrm{R}_{2}+\mathrm{R}_{\mathrm{L}}\right)\right] \mathrm{I}_{\mathrm{Z}}=17.58 \mathrm{~mA}=\mathrm{I}_{\mathrm{L} 1}
$$

Figure 3 shows the given crrcuit considering the effect of $\mathrm{E}_{2}(10 \mathrm{~V})$ source.
To determine the current through $\mathrm{R}_{\mathrm{L}}(1 \mathrm{~K})$ resistor i.e. $\mathrm{I}_{\mathrm{L} 2}$ when E_{2} is present:
The total fesistance, of the network as seen by the source
$R_{T 2}=R_{2} 4\left(R_{1} \| R L\right)=650 \Omega$
The total current drawn by the network from the source

$$
\mathrm{I}_{\mathrm{T} 2}=\mathrm{E}_{2} / \mathrm{R}_{\mathrm{T} 2}=15.3 \mathrm{~mA} .
$$

Applying current divider rule,

$$
\mathrm{I}_{2}=\left[\mathrm{R}_{1} /\left(\mathrm{R}_{1}+\mathrm{R}_{\mathrm{L}}\right)\right] \mathrm{I}_{\mathrm{T} 2}=2.75 \mathrm{~mA}=\mathrm{I}_{\mathrm{L} 2}
$$

Total current through R_{L},

$$
\begin{aligned}
\mathrm{I}_{\mathrm{L}} & =\mathrm{I}_{\mathrm{L} 1}+\mathrm{I}_{\mathrm{L} 2}\left(\text { Since } \mathrm{I}_{\mathrm{L} 1} \text { and } \mathrm{I}_{\mathrm{L} 2} \text { flow in the same direction }\right) \\
& =20.33 \mathrm{~mA} .
\end{aligned}
$$

Figure. 4 Connection diagram for deternination of $I_{L 1}$

Figure. 5 Connection diagram for determination of $\mathbf{I}_{\mathrm{L} 2}$

Figure. 6 Connection diagram for determination of L_{L}

EXPERIMENTAL PROCEDURE FOR PRACTICALDETERMINATION OF I_{L} :

1. Open the Electronic workbench software
2. Choose the elements from the menu and give appropriate values.
3. Give connections as given in Figure 4, 5 \& 6 by simply dragging the mouse.
4. To simulate the circuit, chgose the activate option from analysis menu.
5. Verify the results and compare with theoretical values.

TABLE: VERIFICATION OF SUPERPOSITION THEOREM

(B) VERIFICATION OF TELLEGEN'S THEOREM

THEOREM:

For a given electrical network satisfying the Kirchhoff's law, the sum of the products of element current and the element voltage is zero.

THEORETICAL CALCULATION:

When 30 V is supplied
Total resistance $=470$ ॥ $1000+220=539.72 \Omega$
By ohm's law ,

$$
\begin{aligned}
& \mathrm{V}=\mathrm{IR} \\
& \mathrm{I}=\mathrm{V} / \mathrm{R} \\
& \mathrm{I}=30 / 539.72=0.055 \mathrm{~A}
\end{aligned}
$$

Current through $220 \Omega=0.055 \mathrm{~A}$
Current through $470 \Omega=0.0374 \mathrm{~A}$
Current through $1 \mathrm{~K} \Omega=0.0175 \mathrm{~A}$
Voltage across $220 \Omega=12.1 \mathrm{~V}$
Voltage across $470 \Omega=17.57 \mathrm{~V}$
Voltage across $1 \mathrm{~K} \Omega=17.57 \mathrm{~V}$
Voltage across source $=30 \mathrm{~V}$
$\mathrm{VI}=(30 * 0.055)+(17.57 * 0.0175)+(12.1 * 0.55)+(17.57 * 0.0374)$
$\mathrm{VI}=0.03 \mathrm{w}$
$\mathrm{VI} \simeq 0 \mathrm{w}$

Figure. 7 Given circuit diagram

TABULATION:

Element	Voltage(volts)		Current(A)		P = VI (watts)		
	Theoretical	Practical	Theoretical	Practical	Theoretical	Practical Resistor	12.1

The superposition theorem and Tellegen's theorem is studied and verified using EWB software.

EXP NO:

DATE:

SIMULATION OF SIMPLE ELECTRONIC CIRCUITS USING ELECTRONIC WORK BENCH SOFTWARE

AIM:

To simulate and analyze various simple operational amplifier based electionic circuits using work bench software.

THEORY:

An operational amplifier is a high gain direct coupled amplifier. The voltage gain can be controlled by externally providing the feedback. The operationalamplifier can be used to perform a large number of mathematical operations by this passive feedback. It has two inputs and one output. The inputs are non - inverting and inverting terminals marked with ' + ' and ' - ' sign respectively.

Inverting Amplifier:

In this configuration the input signal is applied to the inverting terminal of the opamp and the non - inverting terminal is connected toground.

Figure. 1 Inverting Amplifier
The output voltage of the inverting amplifier is given as

$$
V_{\text {out }}=-\left(\frac{R_{f}}{R_{1}}\right) V_{\text {in }}
$$

Here if $\mathrm{R}_{1}=1 \mathrm{~K} \Omega$ and $\mathrm{R}_{\mathrm{f}}=10 \mathrm{~K} \Omega$

$$
\mathrm{V}_{\text {out }}=-\left[\left(\frac{10 \mathrm{~K} \Omega}{1 \mathrm{~K} \Omega}\right) \mathrm{V}_{\text {in }}\right]=-\left(10 \mathrm{~V}_{\text {in }}\right)
$$

Figure. 2 Practical circuit for Inverting Amplifier
TABULAR COLUMN:

$\mathbf{V}_{\text {in }}($ volts $)$	$\mathbf{V}_{\text {out }}($ volts $)$	Practical value (v)
0.5	-5	
0.2	-2	
1	-10_{0}	

Non Inverting Amplifier:

In this configuration the input signal is applied to the non - inverting terminal of the op-amp.

Figure. 3 Non - Inverting Amplifier

The output voltage of the non-inverting amplifier can be given as

$$
V_{\text {out }}=\left(1+\frac{R_{f}}{R_{1}}\right) V_{\text {in }}
$$

Here if $R_{1}=1 \mathrm{~K} \Omega$ and $\mathrm{R}_{\mathrm{f}}=1 \mathrm{~K} \Omega$, then $\mathrm{V}_{\text {out }}=\left[1+\left(\frac{1 \mathrm{~K} \Omega}{1 \mathrm{~K} \Omega}\right)\right] \mathrm{V}_{\text {in }}=\left(2 \mathrm{~V}_{\text {in }}\right)$

Figure. 4 Practical circuit for Non - Inverting Amplifier
TABULAR COLUMN:

$\mathbf{V}_{\text {in }}($ volts $)$	$\mathbf{V}_{\text {out }}(\mathbf{v o l t s})$	Practical value (v)
0.5	1	
0.2	0.4	
1	2	

Summer Amplifier:

This circuit sums the input voltages with suitable gain

Figure. 5 Summing Amplifier
The output voltage $\mathrm{V}_{\text {out }}$ can be written as

$$
\mathrm{V}_{\text {out }}=-\left[\left(\frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{1}}\right) \mathrm{V}_{1}+\left(\frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{1}}\right) \mathrm{V}_{2}\right]
$$

Here if $R_{1}=1 \mathrm{~K} \Omega, \mathrm{R}_{2}=1 \mathrm{~K} \Omega$ and $\mathrm{R}_{\mathrm{f}}=1 \mathrm{~K} \Omega$

TABULAR COLUMN:

$\mathbf{V}_{\mathbf{1}}$ (volts)	$\mathbf{V}_{\mathbf{2}}$ (volts)	$\mathbf{V}_{\text {out }}($ volts)	Practical value (volts)
1	2	-3	
2	1	-3	
2	-1	-1	

Voltage follower:

The output voltage follows the input voltage. The output of the voltage follower is given as

$$
\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {in }}
$$

Figure. 7 Practical circuit for Volage follower

TABULAR COLUMN:

$\mathbf{V}_{\text {in }}($ volts)	$\mathbf{V}_{\text {out }}($ volts)	Practical values(v)
0.5	0.5	
5	5	
2		5

Differential Amplifier:

The differential amplifier provides the output, which is the difference in input signals multiplied with gain.

Figure. 8 Differential Amplifier

The output voltage of the differential amplifier can be given as

$$
\mathrm{V}_{\text {out }}=\left[-\left(\frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{1}}\right) \mathrm{V}_{1}+\left(\frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{1}}\right) \mathrm{V}_{2}\right]
$$

If $\mathrm{R}_{\mathrm{f} 1}=\mathrm{R}_{\mathrm{f} 2}=1 \mathrm{~K} \Omega$ and $\mathrm{R}_{1}=\mathrm{R}_{2}=1 \mathrm{~K} \Omega$

Then

$$
\mathrm{V}_{\mathrm{out}}=\left[-\left(\frac{1 \mathrm{~K} \Omega}{1 \mathrm{~K} \Omega}\right) \mathrm{V}_{1}+\left(\frac{1 \mathrm{~K} \Omega}{1 \mathrm{~K} \Omega}\right) \mathrm{V}_{2}\right]=-\left(\mathrm{V}_{1}\right)+\mathrm{V}_{2}
$$

Figure. 9 Practical circuit for Differential Amplifier

TABULAR COLUMN:

\mathbf{V}_{1} (volts)	$\mathbf{V}_{\mathbf{2}}$ (volts)	$\mathbf{V}_{\text {out }}$ (volts)	Practical values (v)
1	2	1	
2	1	-1	
2	-1	-3	
2			

Comparator:

It is an open loop mode configuration of op-amp. Comparator compares the signal between the two terminals and produces positive or negative saturation.

$$
\begin{array}{ll}
\text { Vout }=+15 \mathrm{~V} & \text { if } V_{1}>V_{2} \\
\text { Vout }=-15 \mathrm{~V} & \text { if } V_{2}>V_{1}
\end{array}
$$

Figure. 10 Practical circuit for Comparator

TABULAR COLUMN:

6. Open the Electronic workbench software.
7. Choose the elements from the menu and give appropriate values.
8. Give connections by simply dragging the mouse.
9. To simulate the circuit, choose the activate option from analysis menu.
10. Verify the results.
hus various applications of operational amplifier IC741 have been studied.

EXP NO:

DATE:

IMPLEMENTATION OF DIGITAL TO ANALOG CONVERTER USING MILLMAN'S THEOREM

AIM:
To design a 3-bit D/A converter using resistive divider network and verify practically.

COMPONENTS REQUIRED:

Digital Multimeter, Power Supply unit

THEORY:

Digital to Analog converters are used to convert digital input into analog output. Figure. 1 shows the block diagram of 3-bit D/A converter. It has three input lines ($\mathrm{D}_{2}, \mathrm{D}_{1}$ and D_{0}) and one output line for the analog signal (The three input lines can assume eight $\left(2^{3}=8\right)$ input combinations from 000 to $111(000,001,010,011,100,101,110,111) . D_{2}$ is the most significant bit (MSB) and D_{0} is the leastsignificant bit (LSB).

Figure. 1 Block Diagram of 3-bit D/A Converter

A resistive divider network performs the D/A function as shown in Figure.2. Resistors $\mathrm{R}_{0}, \mathrm{R}_{1}$ and R_{2} form the divider network. Choose $\mathrm{R}_{0}, \mathrm{R}_{1}$ and R_{2} should be such Hat

$$
\mathrm{R}_{1}=\frac{\mathrm{R}_{0}}{2}, \quad \mathrm{R}_{2}=\frac{\mathrm{R}_{0}}{4}
$$

The load resistor R_{L} should be large enough so that it does not load the divider network.

MILLMAN'S THEOREM:

The voltage appearing at any node in a tesistive network is equal to the summation of the currents entering the node divided by the summation of conductance connected to that node.

In equation form analog voltage V_{A} isgiven as

Figure. 3 Resistive Divider Network

For the resistive divider network shown in Figure.3, applying Millman's theorem

$$
\begin{aligned}
\text { Analog Voltage } \mathrm{V}_{\mathrm{A}}= & \frac{\frac{\mathrm{V}_{0}}{\mathrm{R}_{0}}+\frac{\mathrm{V}_{1}}{\mathrm{R}_{1}}+\frac{\mathrm{V}_{2}}{\mathrm{R}_{2}}}{\frac{1}{\mathrm{R}_{0}}+\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}} \\
= & \frac{\frac{\mathrm{V}_{0}}{\mathrm{R}_{0}}+\frac{\mathrm{V}_{1}}{\left(\mathrm{R}_{0} / 2\right)}+\frac{\mathrm{V}_{2}}{\left(\mathrm{R}_{0} / 4\right)}}{\mathrm{R}_{0}}+\frac{1}{\left(\mathrm{R}_{0} / 2\right)}+\frac{1}{\left(\mathrm{R}_{0} / 4\right)} \\
& =\frac{\mathrm{V}_{0}+2 \mathrm{~V}_{1}+4 \mathrm{~V}_{2}}{1+2+4}
\end{aligned}
$$

Rearranging, we get
Ana \log Voltage $\mathrm{V}_{\mathrm{A}}=\frac{4 \mathrm{~V}_{2}+2 \mathrm{~V}_{1}+\mathrm{V}_{0}}{7}$
For example, let logic $\mathbf{0}=\mathbf{0} \mathrm{V}$, logic $\mathbf{1}=\mathbf{5} 5$
For digital input 101
Ana log Voltage $\mathrm{V}_{\mathrm{A}}=\frac{4(5)+2(0)+1(5)}{7}=\frac{25}{7}=3.571$ volts

MODIFIED MILLMAN'S THEOREM:

The analos voltage V_{A} can also be determined for any of the digital input data by using the modified form of Millman's theorem given as

$$
\mathrm{V}_{\mathrm{A}}=\frac{\mathrm{V}_{0} 2^{0}+\mathrm{V}_{1} 2^{1}+\mathrm{V}_{2} 2^{2}+\ldots .+\mathrm{V}_{\mathrm{n}-1} 2^{\mathrm{n}-1}}{2^{\mathrm{n}-1}}
$$

Where $\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{~V}_{2} \ldots \mathrm{~V}_{\mathrm{n}-1}$ is the digital input voltage levels and n is the number of input bits. For the 3-bit network

$$
\mathrm{V}_{\mathrm{A}}=\frac{\mathrm{V}_{0} 2^{0}+\mathrm{V}_{1} 2^{1}+\mathrm{V}_{2} 2^{2}}{2^{3-1}}
$$

Rearranging, we get

$$
\mathrm{V}_{\mathrm{A}}=\frac{\mathrm{V}_{2} 2^{2}+\mathrm{V}_{1} 2^{1}+\mathrm{V}_{0} 2^{0}}{2^{3-1}}
$$

For example, let logic $\mathbf{0}=\mathbf{0 V}$, logic $\mathbf{1}=\mathbf{5 V}$
For digital input 101

$$
\text { Analog Voltage } \mathrm{V}_{\mathrm{A}}=\frac{(5) 2^{2}+(0) 2^{1}+(5) 2^{0}}{2^{3-1}}=\frac{25}{7}=3.571 \mathrm{volts}
$$

Figure. 4 Practical Circuit for 3-Bit D/A Converter

PROCEDURE:

1. Give connection as per the circuit diagram shown in Figure. 4
2. Assume, logic $\mathbf{0}=\mathbf{0 V}$, logic $\mathbf{1}=\mathbf{5 V}$
3. Predetermine the analog output values for different input combinations
4. Give the different digital input combinations (logic $\mathbf{0}=\mathbf{0} \mathrm{V}$, logic $\mathbf{1}=\mathbf{5 V}$) and verify the analog output using the multimeter.

PREDETERMINATION OF ANALOG VOLTAGES:

For digital input 000

$$
\mathrm{V}_{\mathrm{A}}=\frac{(0) 2^{2}+(0) 2^{1}+(0) 2^{0}}{2^{3-1}}=\frac{0}{7}=0 \text { volts }
$$

For digital input 001

$$
\mathrm{V}_{\mathrm{A}}=\frac{(0) 2^{2}+(0) 2^{1}+(5) 2^{0}}{2^{3-1}}=\frac{5}{7}=0.714 \mathrm{volts}
$$

For digital input 111

$$
\mathrm{V}_{\mathrm{A}}=\frac{(5) 2^{2}+(5) 2^{1}+(5) 2^{0}}{2^{3-1}}=\frac{35}{7}=5 \mathrm{volts}
$$

TABULAR COLUMN:

Result:

Thus a 3-bit D/A converter have been designed and its analog voltage is verified for different digifal input combinations.

EXP NO:

DATE:
MULTIPLEXER AND DEMULTIPLEXER

AIM:
To verify the truth table of digital multiplexer using IC 74150 and digitał demultiplexer using IC 74154.

COMPENENTS REQUIRED:

5V power supply unit, Digital multiplexer(IC 74150),
Digital demultiplexer(IC 74154) and Digital multimeter

A) MULTIPLEXER

THEORY:

Multiplexer means many into one. Multiplexer a circuit with many inputs but only one output. The general block diagram of multiplexer is shown in Figure. 2 by applying suitable control signal we can steerany input to the output. The circuit has " n " input signals ,"m" control signals and 1 output signal. The input bits are labeled as D_{0} to D_{15}, control signals as $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ \& outputbifes Y .

The IC 74150 is a 16 te 1 multiplexer with the pin diagram as shown in Figure. 1 The expression for multiplexer output is given as $Y=D_{n}$

Where n is the decimal eqrívalent of ABCD . A low state enables the multiplexer and output is equal to the complement of the input data bit.

A high strobe disables the multiplexer and forces the output into the high state.

PROCEDURE:

1. Fory the truth table as in Table. 1

Apply the input and control signals as in Table. 1
Verify the output using voltmeter.

Table 1 - Truth Table of Multiplexer [IC 74150]																							
	A	B	C	D	STROBE	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12			D15	Y	o/p (v)
	X	X	X	X	H	X	X	X	X	X	X	X	X	X	X	X	X	X	X	W	X	1	
	0	0	0	0	0	0	X	X	X	X	X	X	X	X	X	X	X	X	X	${ }^{7} \mathrm{X}$	X	1	
	0	0	0	0	0	1	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	0	
	0	0	0	1	0	X	0	X	X	X	X	X	X	X	X	X	\%	*	X	X	X	1	
	0	0	0	1	0	X	1	X	X	X	X	X	X	X	X	X	X	X	X	X	X	0	
	0	0	1	0	0	X	X	0	X	X	X	X	X	X	X	X	X	F'x	X	X	X	1	
	0	0	1	0	0	X	X	1	X	X	X	X	X	X	X	X	- $x^{\text {x }}$	X	X	X	X	0	
	0	0	1	1	0	X	X	X	0	X	X	X	X	X	X	X^{1}	X	X	X	X	X	1	
	0	0	1	1	0	X	X	X	1	X	X	X	X	X	X	x	X	X	X	X	X	0	
	0	1	0	0	0	X	X	X	X	0	X	X	X	X	X	\%	X	X	X	X	X	1	
	0	1	0	0	0	X	X	X	X	1	X	X	X	X	${ }^{\text {P }}$ X	X	X	X	X	X	X	0	
	0	1	0	1	0	X	X	X	X	X	0	X	*	X	X	X	X	X	X	X	X	1	
	0	1	0	1	0	X	X	X	X	X	1	X	X	X	X	X	X	X	X	X	X	0	
	0	1	1	0	0	X	X	X	X	X	X	10	S X	\bar{F}	X	X	X	X	X	X	X	1	
	0	1	1	0	0	X	X	X	X	X	X	1	\%	X	X	X	X	X	X	X	X	0	
	0	1	1	1	0	X	X	X	X	X	X	- χ^{\prime}	0	X	X	X	X	X	X	X	X	1	
	0	1	1	1	0	X	X	X	X	X	*	- ${ }^{\text {x }}$	1	X	X	X	X	X	X	X	X	0	
	1	0	0	0	0	X	X	X	X	4	*	¢	X	0	X	X	X	X	X	X	X	1	
	1	0	0	0	0	X	X	X	X	-	X	X	X	1	X	X	X	X	X	X	X	0	
	1	0	0	1	0	X	X	X	x	X	$\frac{X}{X}$	X	X	X	0	X	X	X	X	X	X	1	
	1	0	0	1	0	X	X	X		X	X	X	X	X	1	X	X	X	X	X	X	0	
	1	0	1	0	0	X	X	X	X	- ${ }^{\text {x }}$	X	X	X	X	X	0	X	X	X	X	X	1	
	1	0	1	0	0	X		X	\%	X	X	X	X	X	X	1	X	X	X	X	X	0	
	1	0	1	1	0	X	人	X	X	X	X	X	X	X	X	X	0	X	X	X	X	1	
	1	0	1	1	0	X	X	X	X	X	X	X	X	X	X	X	1	X	X	X	X	0	
	1	1	0	0	0	X		${ }^{\text {X }}$	X	X	X	X	X	X	X	X	X	0	X	X	X	1	
	1	1	0	0	0	X	X	X	X	X	X	X	X	X	X	X	X	1	X	X	X	0	
	1	1	0	1	0	X	X	X	X	X	X	X	X	X	X	X	X	X	0	X	X	1	
	1	1	0	1	0	X	X	X	X	X	X	X	X	X	X	X	X	X	1	X	X	0	
	1	1	1	0	0 \%	X	X	X	X	X	X	X	X	X	X	X	X	X	X	0	X	1	
	1	1	1	0	0	X	X	X	X	X	X	X	X	X	X	X	X	X	X	1	X	0	
	1	1		1	4	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	0	1	
	1		1		\% 0	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	1	0	
												47											

B) DEMULTIPLEXER

THEORY :

Demultiplexing means one to many. Demultiplexer is a logic circuit with one input and many outputs. By applying control signal we can steer the input signal to one of the output lines. The general block diagram of the demultiplexer is shown in Figure. 4

74154 is a 4 to 16 decoder which provides decoding of four bit binary edded input into one of mutually exclusive outputs when both the strobe inputs E1 \& E2 axe in the zero state. Each of the strobe input can be used as data input to perform the demultiplexer function by using the 4 input lines to address the output line and having the other strobe input zero. When either of the strobe signal is high all outputs are high.

PROCEDURE:

1. Form the truth table as in Table.2.
2. Apply the input and control signals as in Table.2
3. Verify the output using voltmeter.

Table 2 Truth Table of Demultiplexer [IC 74154]

STROBE	$\mathbf{D A T A}$	\mathbf{D}	\mathbf{C}	\mathbf{B}	\mathbf{A}	$\mathbf{Q}_{\mathbf{0}}$	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{3}}$	$\mathbf{Q}_{\mathbf{4}}$	$\mathbf{Q}_{\mathbf{5}}$	$\mathbf{Q}_{\mathbf{6}}$	$\mathbf{Q}_{\mathbf{7}}$	$\mathbf{Q}_{\mathbf{8}}$	$\mathbf{Q}_{\mathbf{9}}$	$\mathbf{Q}_{\mathbf{1 0}}$	$\mathbf{Q}_{\mathbf{1 1}}$	$\mathbf{Q}_{\mathbf{1 2}}$	$\mathbf{Q}_{\mathbf{1 3}}$	$\mathbf{Q}_{\mathbf{1 4}}$	$\mathbf{Q}_{\mathbf{1 5}}$
0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	$\mathbf{1}$	$\mathbf{1}$	1	1	1	1
0	0	0	0	0	1	1	0	1	1	1	1	1	1	1	1	1	$\mathbf{1}$	1	1	1	1
0	0	0	0	1	0	1	1	0	1	1	1	1	1	1	1			1	1	1	1
0	0	0	0	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	1	0	0	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1
0	0	0	1	0	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1
0	0	0	1	1	0	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1
0	0	0	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
0	0	1	0	0	0	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
0	0	1	0	0	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1
0	0	1	0	1	0	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1
0	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
0	0	1	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1
0	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1
0	0	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	1	X	X	X	X	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	0	X	X	X	X	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	X	X	X	X	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Practical Values from voltmeter

Logic 0
Logic 1

EXP NO:

DATE:

VERIFICATION OF LOGIC GATES USING INTEGRATED CHIPS

AIM:
To construct the basic gates AND, OR, NOT, NAND, EX-OR and NOR and verify therintruth table.

APPARATUS REQUIRED:

IC7400 -	NAND Gate	-	1 No
IC7402 -	NOR	Gate	-
IC7404-	NOT Gate	-	1 No
IC7408 -	AND Gate	-	1 No
IC7432 -	OR Gate	-	1 No
IC7486 -	EX-OR Gate	-	1 No

PROCEDURE:

(i) AND GATE

The expression for two input AND gate is A.B. Connect pin 14 to +5 V DC and pin 7 to GND. Use +5 V for logic 1 and 0 V for logte 0 . Verify the output for various combinations of the input, with the truth table of the AND gate given in Table.1. The pin detail of IC7408 is shown in Figure.1.

Figure. 1 Practical Circuit for verification of AND Gate

Figure. 2 Pin Detail of IC 7408(AND gate)
Table.1. Truth Table for AND Gate

(ii) OR GATE

응
The expression fortwoinput OR gate is A+B. Connect pin 14 to +5 V DC and pin 7 to GND. Use +5 V for logic 1 and 0 V for logic 0 . Verify the output for various combinations of the input, with the trutb table of the OR gate given in Table.2. The pin detail of IC7432 is shown in Figure 3.

Figure. 3 Practical Circuit for verification of OR Gate

Figure. 4 Pin Detail of IC 7432(OR gate)
Table.2. Truth Table for OR Gate

\mathbf{A}	\mathbf{B}	$\mathbf{Y}=\mathbf{A + B}$	Prattical Value in Volts
0	0	6	
0	1	1	
1	0	1	
1	1	1	

(iii) NAND GATE

The expression for two lanut NAND gate is $\overline{A \cdot B}$. Connect pin 14 to +5 V DC and pin 7 to GND. Use +5 V for logit D and 0 V for logic 0 . Verify the output for various combinations of the input, with the truth table of the NAND gate given in Table.3. The pin detail of IC7400 is shown in Figure. 5.

Figure. 5 Practical Circuit for verification of NAND Gate

Figure. 6 Pin Detail of IC 7400(NAND gate)
Table.3. Truth Table for NAND Gate
(iv) NOR GATE

The expression fortwo inputNOR gate is $\overline{A+B}$. Connect pin 14 to +5 V DC and pin 7 to GND. Use +5 V for logic 1 and 0 V for logic 0 . Verify the output for various combinations of the input, witb the truth table of the NOR gate given in Table.4. The pin detail of IC7402 jsshownin Figure.7.

Figure. 7 Practical Circuit for verification of NOR Gate

Table.4. Truth Table for NOR Gate

\mathbf{A}	\mathbf{B}	$\mathbf{Y}=\overline{A+B}$	Praetical Value in Volts
0	0		
0	1	0	
1	0	0	
1	1	0	

(v) NOT GATE

The expression for two ninput gate is \bar{A}. Connect pin 14 to +5 V DC and pin 7 to GND. Use +5 V for logic 4 and 9 V for logic 0 . Verify the output for various combinations of the input, with the truth table of the NOT gate given in Table.5. The pin detail of IC7404 is shown in Figure.9.

Figure. 9 Practical Circuit for verification of NOT Gate

Figure. 10 Pin Detail of IC 7404(NOT gate)
Table.5. Truth Table for NOT Gate

\mathbf{A}	$\mathbf{Y}=\bar{A}$	Practical Value in Volts
0	1	
1	0	

(vi) EX-OR GATE

The expression for two input EX-OR gat is $A(B$. Connect pin 14 to +5 V DC and pin 7 to GND. Use +5 V for logic 1 and 0 V for logic 0 . Verify the output for various combinations of the input, with the truth table of the EXOOR gate given in Table.6. The pin detail of IC7486 is shown in Figure.6.

Figure. 11 Practical Circuit for verification of EX-OR Gate

Table.6. Truth Table for EX-OR Gate

Result:

A	B	$\mathbf{Y}=\langle\oplus$	Practical Value in Volts
0	0	0	
0	1	-1	
1	0	-1	
1	41	$\bigcirc 0$	

Thus truth table of various logic gates has been verified.

EXP NO:

DATE:

IMPLEMENTATION OF HALF ADDER AND HALF SUBTRACTOR USING LOGIC GATES

AIM:

To construct and verify the operation of the half adder and half subtractor circuits using suitable logic gates.

COMPONENTS REQUIRED:

IC 7486-(Ex-Or gate) -1 NO.
IC 7408 - (AND gate) -1 NO.
IC 7432 - (OR gate) -1 NO.
IC 7404 - (NOT gate) -1 NO.
Voltmeter (0-10v)

THEORY:

The most basic arithmetic operation is the addition of two binary digits. This simple addition consists of four possible elementary operations: $0+0=0,0+1=1,1+0=1$ and 1 $+1=10$. The first three operations produce a sum of one digit, but the last operation produce the binary sum of two digits. The higher significant bit of the result is called as carry. A combinational circuit that performs addition of two bits is called a Half Adder and the circuit that performs subtraction of two bits is called a Half Subtractor.

(A)HALF ADDER

This circuit needs two binary input and two binary outputs. The input variables designate the augend and addend bits and output variables produce the sum and the carry. We assign symbols A and B to the inputs and Sum and Carry to the outputs. The Carry output is 0 unless both the inputs are - The Sum output represents the least significant bit of the sum. The truth table is shown in Table. 1

Table.1. Truth table for Half Adder operation

BINARY INPUTS		BINARY OUTPUTS	
A	B	SUM	CARRY
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

(B) HALF SUBTRACTER

This circuit needs two binary input and two binary outputs. The input variables denoted by A and B and the output variables are D (difference) and B (borrow). The truth table is shown in Table. 2

Table.2. Truth table for Half Subtractor operation

BINARY INPUTS		BINARY OUTPUTS	
A	B	DIFFERENCE	BORROW
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

KARNAUGH MAP FOR HALF ADDER AND HALF SUBTRACTOR

Half Adder:

Carry = A.B

Half Subtractor:

Difference Map

$$
\begin{aligned}
& \text { Difference }=\bar{A} B+A \bar{B} \\
& \quad=A \oplus B
\end{aligned}
$$

Borrow Map

Borrow $=\bar{A} B$

PROCEDURE:

(A)HALF ADDER

1. Using logic expression given in the equation, build the circuit for a half adder using suitable gates as shown in Figure.1.
2. Verify the half adder operation for various input combinations and tabulate the voltmeter reading in Table.3.

Table.3. Tabular column to verify Half Adder Circuit

Binary Inputs						
Binary Outputs		Practical value (volts)				
A	B	SUM	CARRY	SUM	CARRY	
0	0	0	0			
0	1	1	0			
1	0	1	0			
1	1	0	1			

$\operatorname{logic} 0=0 \mathrm{~V}$, logic $\mathbf{1 = 5 V}$
(B) HALF SUBTRACTOR

1. Using logic expression given in the equation, build the circuit for a half subtractor using suitable gates as shown in Figure.2.)
2. Verify the half subtractor operation for various input combinations and tabulate the voltmeter reading in Table. 4

Table.4. Tabular column to verify Half Subtractor Circuit

Binary inputs	Binary outputs		Practical values (volts)		
\mathbf{A}	\mathbf{B}	Difference	Borrow	Difference	Borrow
0	0	0	0		
0	1	1	1		
1	0	1	0		
1	1	0	0		

Table.4. Tabular column to verify Full Adder Circuit $\operatorname{logic} 0=0 \mathrm{~V}$, logic $1=5 \mathrm{~V}$

RESULT

Thus the half adder and half subtractor circuits were verified experimentally.

EXP NO:	
DATE:	
SIMPLIFICATION OF LOGIC EXPRESSIONS USING KARNAUGH	
MAP TECHNIQUES	

To realize the given logic functions using suitable gates.
$\mathrm{Fl}=\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}} \mathrm{D}+\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{CD}+\overline{\mathrm{A}} \mathrm{B} \overline{\mathrm{C}} \overline{\mathrm{D}}+\overline{\mathrm{A}} \mathrm{BC} \overline{\mathrm{D}}+\mathrm{A} \overline{\mathrm{B}} \overline{\mathrm{C}} \mathrm{D}+\mathrm{A} \overline{\mathrm{B}} \mathrm{CD}+\mathrm{AB} \overline{\mathrm{C}} \overline{\mathrm{D}}+\mathrm{ABC} \overline{\mathrm{D}}$
$\mathrm{F} 2=\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{C} \overline{\mathrm{D}}+\overline{\mathrm{A}} \mathrm{B} \overline{\mathrm{C}} \overline{\mathrm{D}}+\mathrm{A} \overline{\mathrm{B}} \overline{\mathrm{C}} \mathrm{D}+\mathrm{A} \overline{\mathrm{B}} \mathrm{CD}+\mathrm{AB} \overline{\mathrm{C}} \mathrm{D}+\mathrm{ABCD}$
with don't cares
$\mathrm{d}=\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}} \overline{\mathrm{D}}+\overline{\mathrm{A}} \mathrm{BC} \overline{\mathrm{D}}$
$F 3=(\bar{A} \bar{B} \bar{C} D+\bar{A} B \bar{C} \bar{D}+\bar{A} B \bar{C} D+A B \bar{C} \bar{D}+A B \bar{C} D+A \bar{B} C D+A \bar{B} C \bar{D})(A C+C)$
COMPONENTS REQUIRED:
IC 7486-XOR gate, IC 7408-AND gate, Regulatedpower \$upply and 0-10V range voltmeter.

Figure. 1 Pin Diagram of IC 7486

Figure. 2 Pin Diagram of IC 7408

SOLUTION:

Function F1

$\mathrm{Fl}=\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}} \mathrm{D}+\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{CD}+\overline{\mathrm{A}} \mathrm{B} \overline{\mathrm{C}} \overline{\mathrm{D}}+\overline{\mathrm{A}} \mathrm{BC} \overline{\mathrm{D}}+\mathrm{A} \overline{\mathrm{B}} \overline{\mathrm{C}} \mathrm{D}+\mathrm{A} \overline{\mathrm{B}} \mathrm{CD}+\mathrm{AB} \overline{\mathrm{C}} \overline{\mathrm{D}}+\mathrm{ABC} \overline{\mathrm{D}}$
The function F 1 is given in sum of minterms, which can be expressed as
$\mathrm{Fl}=\sum \mathrm{m}(1,3,4,6,9,11,12,14)$
Since the number of variables involved is four, the given minterms are mapped using the four variable map and grouping all the ones, there are two quad groups as shown in Figure. 3

Group 1

Figure. 3 K-map of Function F1
From the map

Group Number		
Group I	Minterms involved	Reduced to
Group II	$\overline{3}, 9,11$	$\overline{\mathrm{~B}} \mathrm{D}$

Hence F 1 is reduced to
$\mathrm{Fl}=\overline{\mathrm{B}} \mathrm{D}+\mathrm{B} \overline{\mathrm{D}}=\mathrm{B} \oplus \mathrm{D}$
Which implies the XOR funetion that can be implemented using one of the four gates in IC 7486 as shown in Figure. 4

Figure. 4 Implementation of Function F1 using IC 7486

TABULAR COLUMN:

\mathbf{B}	\mathbf{D}	$\mathrm{B} \oplus \mathrm{D}$	Practical Value of F1 in volts
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Function F2
$\mathrm{F} 2=\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{C} \overline{\mathrm{D}}+\overline{\mathrm{A}} \mathrm{B} \overline{\mathrm{C}} \overline{\mathrm{D}}+\mathrm{A} \overline{\mathrm{B}} \overline{\mathrm{C}} \mathrm{D}+\mathrm{A} \overline{\mathrm{B}} \mathrm{CD}+\mathrm{AB} \overline{\mathrm{C}} \mathrm{D}+\mathrm{ABCD}$
with don't cares
$\mathrm{d}=\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}} \overline{\mathrm{D}}+\overline{\mathrm{A}} \mathrm{BC} \overline{\mathrm{D}}$
$\mathrm{F} 2=\sum \mathrm{m}(2,4,9,11,13,15) \quad \mathrm{d}=\sum \mathrm{m}(0,6)$
Function F2 has sum of minterms and don't cares with four vartables. Using Karnaugh map it is mapped and grouping all the ones with possible don't cares, there are two quad groups as shown in Figure. 5

From the map

Group 2
Figure. 5 K-map of Function F2

Group Number	Minterms involved	Reduced to
Group I	$0,2,4,6$	$\overline{\mathrm{~A}} \overline{\mathrm{D}}$
Group II	$9,11,13,15$	AD

Hence F2 is reduced to
$\mathrm{F} 2=\overline{\mathrm{A}} \mathrm{D}+\mathrm{AD}$
Which is the XNOR function, and it is implemented using the available XOR gates as

$$
\begin{array}{ll}
\mathrm{F} 2=\overline{\mathrm{A}} \overline{\mathrm{D}}+\mathrm{AD}=\mathrm{A} \oplus \overline{\mathrm{D}} & \text { since } \mathrm{A} \oplus \overline{\mathrm{D}}=\mathrm{A} \overline{\overline{\mathrm{D}}}+\overline{\mathrm{A}} \overline{\mathrm{D}}=\mathrm{AD}+\overline{\mathrm{A}} \overline{\mathrm{D}} \\
\text { and } \overline{\mathrm{D}}=1 \oplus \mathrm{D} & \text { since } 1 \oplus \mathrm{D}=1 \overline{\mathrm{D}}+\overline{1} \mathrm{D}=\overline{\mathrm{D}}+0=\overline{\mathrm{D}}
\end{array}
$$

Therefore $\mathrm{F} 2=\mathrm{A} \oplus(1 \oplus \mathrm{D})$ and implemented using two numbers of XOR gates in IC 7486 as shown in Figure. 6

Thus F3 is converted to sum of minterms and mapped using the four variable map and grouping all the ones, there are two pair groups as shown in Figure. 7

Figure. 7 K-map of Function F3

From the map

Hence F 3 is reduced to $\mathrm{F} 3=\hat{A} \overline{\mathrm{C}}+\hat{A} \overrightarrow{\mathrm{AB}} \mathrm{C}$

Which can be implemented usipg AND (one gate of IC 7408) and XOR (one gate of IC 7486) gates as shown in Figure. $8^{\circ}=$

Figure. 8 Implementation of Function F3 using IC 7486 and IC 7408

